

Medium- and Heavy-Duty Electric Vehicle Forecasting

Final Deliverable

May 26th, 2020

Contents

#	Section Title	Page
1	Project Overview	2
2	EV Adoption Output	7
3	EV Charging Needs and Site Configuration	17
4	Modeling Methodology Overview	38
5	Modeling Assumptions	46
6	Key Modeling Inputs	50
7	Glossary	55

Project Overview

Project objectives and output

Your Objectives

- Assess the probable adoption of non-LD EVs in California on the 2030, 2040, and 2050 timeframe – leveraging any existing non-LD EV projections, information related to current California non-LD regulatory rulemakings, and market intelligence
- Assess the expected need and site configurations for private and public EV charging infrastructure to accommodate nonlight-duty EV adoption – including laying out a set of probable charging site configurations (power level and number of chargers per site)
- (Out Of Scope) Assess the estimated **utilityand customer-side cost** for developing the EV charging infrastructure

Our Outputs

- Develop a 2020-2050 EV **adoption forecast** in California, at the census tract level, for non-light-duty vehicles, including medium- and heavy-duty on-road vehicles as well as medium- and heavy-duty off-road vehicles
- Perform EV charging needs forecasting to provide CalETC with an understanding of approximate locations for EV charging infrastructure development based on projected adoption of EVs through 2050, along with typical site configurations
- (Out Of Scope) Estimate **utility- and customer-side costs** associated with deploying EV charging infrastructure

Project schedule

Guidehouse

Project organizational chart

We leveraged a project team structure ensuring strong collaboration between CalETC and Guidehouse:

- A Steering Committee comprised of CalETC utility members who provided guidance alongside Guidehouse's global Mobility lead
- A **Core Team** organized as a working group with dedicated focus on this effort, driving the project from start from finish, comprised of a project manager, a modeling team, and a research lead
- Select **Subject-Matter Experts** offering Guidehouse's latest thought leadership on EV forecasting, whom the Core Team tapped as appropriate

Project meetings

Meeting	Objectives		Guidehouse	Logistics
Annual All Member Meeting	 Present modeling methodology overview 	Core TeamCalETC Members	Steering CommitteeCore Team	 Mar 19, 2:20 – 2:40 pm PDT, via teleconference
Check-In Meetings	 Review deliverable in progress Discuss any outstanding item(s) 	Steering CommitteeCore Team	 Core Team Subject-Matter Experts as appropriate 	 Mar 31, 1:00 – 2:00 pm PDT, via Skype Apr 22, 2:00 – 3:00 pm PDT, via Skype May 6, 10:00 – 11:30 am PDT, via Skype
Interim Presentation	 Review EV Adoption Forecasting deliverable (Task 2) 	Steering CommitteeCore Team	 Steering Committee Core Team Subject-Matter Experts as appropriate 	 Apr 8, 10:00 – 11:30 am PDT, via Skype
Final Presentation	 Review EV Charging Needs and Site Configuration deliverable (Task 3) 	Steering CommitteeCore Team	 Steering Committee Core Team Subject-Matter Experts as appropriate 	 May 21, 9:30 – 11:00 am PDT, via Skype

EV Adoption Output

Market was split into 13 vehicle segments spanning across on-road and off-road use

Road Usage	Vehicle Duty		Vehicle Segment	Example Vehicle
	Light		Class 1 Vehicles	Sedan, small sport utility vehicle, small crossover, small pickup truck Out Of Scope I
	Duty		Class 2a-2b Vehicles	Sport utility vehicle, pickup truck, small delivery van
On-Road			Class 3 Trucks	Walk-in van, city delivery van
			Class 4-5 Trucks	Box truck, city delivery van, step van
			Class 6 Trucks	Beverage truck, rack truck
	Medium and Heavy Duty		Class 7-8 Trucks	Short-haul truck, long-haul truck
			School Buses	School bus
			Transit Buses	Transit bus
			On-Road Specialty Vehicles	Fire truck, ambulance, recreational vehicle, refuse truck, drayage truck
			Transport Refrigeration Units	Refrigeration unit (excluding tractor trailer) for warehouses, distribution centers, grocery stores
	Airport Ground Support Equipment		Airport Ground Support Equipment	Aircraft refueler, aircraft pushback tractor
Off-Road		00 00 O	Seaport Cargo Handling Equipment	Hostler truck, rubber-tired gantry crane, container handler (ship at birth out of scope)
			Other Forklifts	Counterbalance / telescopic handler forklift for warehouses, lumberyards, and construction sites

Modeling scenarios reflect 3 potential futures of EV adoption in California

Drivers	Description	No Incentive Scenario	Planned Incentives Scenario	Regulatory Target Scenario
Incentives	Dollar per EV tax incentive (\$)	 Any existing and planned California incentives discontinued 	 California incentive policies currently existing and planned (AFDC, Off-Road Vehicle Industry) 	 Additional "cash on the hood" incentive per vehicle covering 50% of incremental cost of EV over ICEV¹
Battery Costs	Battery pack costs (\$ per kWh)	 Guidehouse Insights higher-bound battery cost forecast (leading to increased EV operating costs) 	 Guidehouse Insights base battery cost forecast 	Guidehouse Insights lower-bound battery cost forecast (leading to decreased EV operating costs)
Fuel Prices	Gasoline and diesel prices (\$ per gallon)	 25% lower gasoline and diesel prices vs. base (leading to decreased operating ICEV costs) 	 AAA California average base assumption, adjusted for inflation 	• 75% higher gasoline and diesel prices vs. base (leading to increased operating ICEV costs)
Consumer Awareness and Acceptance	Marketing and outreach influencing customer familiarity (i.e., public awareness / acceptance), prerequisite for adoption	 One-third lower consumer awareness and acceptance vs. base (leading to decreased EV adoption) 	 Guidehouse Insights base assumption, calibrated to California's historical consumer awareness metrics 	 One-third higher consumer awareness and acceptance vs. base (leading to increased EV adoption)¹
Regulations	Policies regulating ICEVs and EVs	 Penalties paid in lieu of adoption per ZEV, ACT, ACT Fleet, and TRU rules 	 Penalties paid in lieu of adoption per ZEV, ACT, ACT Fleet, and TRU rules 	Adoption consistent with ZEV, ACT, ACT Fleet, TRU, and Heavy-Duty Diesel Vehicles rules, and reinstated CAFE standards

Planned Incentives Scenario: Circa 41,000 non-light duty, on-road EV annual sales in 2040 (12% market share)

On-Road EV Annual Sales by Vehicle Segment

'000 Vehicles, Planned Incentives Scenario, 2020-2040

On-Road Vehicle Annual Sales by Powertrain '000 Vehicles, Planned Incentives Scenario, 2020-2040

Planned Incentives Scenario: Over 456,000 non-light duty, on-road EVs expected by 2040 (6% penetration)

On-Road EV Population by Vehicle Segment

'000 Vehicles, Planned Incentives Scenario, 2020-2040

On-Road Vehicle Population by Powertrain '000 Vehicles, Planned Incentives Scenario, 2020-2040

Planned Incentives Scenario: Circa 273,000 off-road EVs expected by 2040 (78% penetration)

Other Forklifts segment is expected to continue electrification replacing ICEV powertrain (driven by market dynamics and conversion limitations expected for heavier-duty use cases), and Seaport / Airport segment is expected to reach 74% / 91% electrification by 2040 respectively.

12

Planned Incentives Scenario: EV penetration by 2040 ranges by vehicle segment between 4% and 91%

EV Penetration as a Share %, Planned Incentives Scer	e of Total Popul nario, 2040	ation, by Vehicle Segment	Tota	Il Population ('000)	
Class 2b Vehicles	Class 2b Vehicles 4% 96%				
Class 2a Vehicles	4%	96%		4,850	
Class 3 Trucks	7%	93%		481	
Class 4-5 Trucks	7%	93%		334	
Class 7-8 Trucks	7%	93%		705	
Class 6 Trucks	8%	92%			
On-Road Specialty Vehicles	8%	92%		5	
School Buses	16%	84%		15	
Transit Buses	24%	76%		24	
Transport Refrigeration Units	27%	73%		202	
Seaport Cargo Handling Equip.		74%	26%	9	
Other Forklifts		78%	22%	332	
Airport Ground Support Equip.		91% 9		9	
		EV (BEV + PHEV)	ICEV	1	

Guidehouse

Airport Ground Support **Equipment** and **Other Forklifts** are vehicle segments with highest expected EV penetration by 2040, due to relatively high EV population to date and wider vehicle availability.

 Class 2a Vehicles and Class 2b **Vehicles** are vehicle segments with **lowest** expected EV penetration by 2040, based on EMFAC and CARB vehicle forecasts. However, low relative EV penetration still means large absolute numbers given total vehicle segment population. 13

Regulatory Target Scenario: 132% upside for on-road and 15% for off-road vehicles vs. Planned Incentives Scenario

Non-light duty, on-road EV adoption is expected to be spread across major metro areas, ports and Central Valley

Los Angeles, Sacramento, and San Francisco Bay Area are metro areas expecting higher on-road EV adoption

EV Charging Needs and Site Configuration Output

EV charging site configuration overview

LocationSite location was determined based on highway
annual average daily traffic (AADT)Site location was determined based on where
vehicle is registered

	Small	Site sizes were determined	Small	Site sizes were determined based
Size	Medium	based on highway traffic demand at each site	Medium	on number of vehicles registered
	Large		Large	In each tract

Infrastructure charging needs differ by vehicle segment and site type

Charging Port Count Needed por 1 000 Vehicles

	Planned Incentives Scenario, 2040				
Vehicle Segment	DCFC Private Depot	Level 2 Private Depot	DCFC Public Hub	Level 2 Public Hub	
Class 2a Vehicles	5	610	3	20	
Class 2b Vehicles	5	610	3	20	
Class 3 Trucks	270	250	60	30	
Class 4-5 Trucks	270	250	60	30	
Class 6 Trucks	280	250	60	30	
Class 7-8 Trucks	870	0	110	30	
School Buses	120	650	0	0	
Transit Buses	730	15	0	0	
On-Road Specialty Vehicles	560	130	80	30	
In-State TRUs	0	870	110	30	
Airport Ground Support Equipment	500	270	0	0	
Seaport Cargo Handling Equipment	500	270	0	0	
Other Forklifts	0	770	0	0	

- Private charging is expected to fulfil the majority of charging needs for all use cases, driven by convenience and customer preference.
- Level 2 charging is expected to continue to play a key role for Class 2 Vehicles, however,
 DCFC will be key for Class 3 Trucks and above, as well as for off-road segments.
- Heavier-duty vehicle segments such as Class 7-8 Trucks are expected to rely primarily on DCFC.

Site configurations for Class 2a-2b Vehicles

Planned Incentives Scenario, 2040

Site Type⁴	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	1	172	588	77.3
Public	Medium	Public hub station with 5-15 chargers along public corridor	<1	170	955	24.3
Hub	Small	Public hub station with <5 chargers on rural highway	<0.1	169	1,416	14.3
l evel 2	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	5	13	588	38.9
Public	Medium	Public hub station with 5-15 chargers along public corridor	1	12	955	11.7
Hub	Small	Public hub station with <5 chargers on rural highway	<1	12	1,416	6.3
DCFC	Large	50+ rental car fleet	1	161	550	93.2
Private	Medium	5-10 unit multifamily complex with shared charging	<1	161	2,546	59.9
Depot	Small	3-truck fleet owned by small contractor	<0.1	161	19,999	50.2
l evel 2	Large	50+ delivery van fleet	3	11	1,394	49.4
Private Depot	Medium	5-10 unit workplace charging for mid-sized employer	1	11	8,311	46.9
	Small	Single truck owned by individual contractor	1	11	284,386	1,584.0

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 3.6 kW to 19.2 kW for Level 2 and from 50 kW to 300 kW for DCFC.

3. Total Rated MW is the result of Average Port Count x Average Rated kW x Total Site Count, not discounted for any load management, and is therefore different from any grid systemwide coincident / noncoincident peak calculation. See modeling assumptions for further detail.

Guidehouse

4. Class 2a-2b Vehicles are expected to use some Level 1 charging, which would come in addition to the charging needs displayed here.

Site configurations for Class 2a Vehicles

Planned Incentives Scenario, 2040

Site Type⁴	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	1	173	588	72.2
Public	Medium	Public hub station with 5-15 chargers along public corridor	<1	173	955	18.8
Hub	Small	Public hub station with <5 chargers on rural highway	<1	173	1,416	8.4
l evel 2	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	5	13	588	36.3
Public	Medium	Public hub station with 5-15 chargers along public corridor	1	13	955	8.8
Hub	Small	Public hub station with <5 chargers on rural highway	<1	13	1,416	3.5
DCFC	Large	50+ rental car fleet	1	159	375	78.4
Private	Medium	5-10 unit multifamily complex with shared charging	<1	159	1,736	50.4
Depot	Small	3-truck fleet owned by small contractor	<1	159	13,638	42.3
Level 2 Private Depot	Large	50+ delivery van fleet	4	11	952	41.6
	Medium	5-10 unit workplace charging for mid-sized employer	1	11	5,668	39.5
	Small	Single truck owned by individual contractor	<1	11	244,872	1,336.0

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 3.6 kW to 19.2 kW for Level 2 and from 50 kW to 300 kW for DCFC.

3. Total Rated MW is the result of Average Port Count x Average Rated kW x Total Site Count, not discounted for any load management, and is therefore different from any grid systemwide coincident / noncoincident peak calculation. See modeling assumptions for further detail.

Guidehouse

4. Class 2a-2b Vehicles are expected to use some Level 1 charging, which would come in addition to the charging needs displayed here.

Site configurations for Class 2b Vehicles

Planned Incentives Scenario, 2040

Site Type⁴	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCEC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	<1	164	588	5.0
Public	Medium	Public hub station with 5-15 chargers along public corridor	<1	164	955	5.4
Hub	Small	Public hub station with <5 chargers on rural highway	<1	164	1,416	5.8
l evel 2	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	<1	12	588	2.6
Public	Medium	Public hub station with 5-15 chargers along public corridor	<1	12	955	2.8
Hub	Small	Public hub station with <5 chargers on rural highway	<1	12	1,416	2.8
DCFC	Large	50+ rental car fleet	<1	174	349	14.9
Private	Medium	5-10 unit multifamily complex with shared charging	<1	174	1,619	9.5
Depot	Small	3-truck fleet owned by small contractor	<1	173	12,723	8.0
l evel 2	Large	50+ delivery van fleet	1	12	885	7.8
Private Depot	Medium	5-10 unit workplace charging for mid-sized employer	<1	12	5,285	7.4
	Small	Single truck owned by individual contractor	<1	12	79,028	248.0

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 3.6 kW to 19.2 kW for Level 2 and from 50 kW to 300 kW for DCFC.

3. Total Rated MW is the result of Average Port Count x Average Rated kW x Total Site Count, not discounted for any load management, and is therefore different from any grid systemwide coincident / noncoincident peak calculation. See modeling assumptions for further detail.

Guidehouse

4. Class 2a-2b Vehicles are expected to use some Level 1 charging, which would come in addition to the charging needs displayed here.

Site configurations for Class 3-6 Trucks + On-Road Specialty Vehicles

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	33	207	107	734.2
Public	Medium	Public hub station with 5-15 chargers along public corridor	4	207	174	156.2
Hub	Small	Public hub station with <5 chargers on rural highway	1	207	258	27.6
l evel 2	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	18	15	107	27.8
Public	Medium	Public hub station with 5-15 chargers along public corridor	2	15	174	5.9
Hub	Small	Public hub station with <5 chargers on rural highway	<1	15	258	1.0
DCFC	Large	10+ delivery van / rack truck fleet	11	214	79	178.9
Private	Medium	5-10 delivery van / rack truck fleet owned by local contractor	10	214	406	823.5
Depot	Small	3-truck fleet owned by small contractor	3	214	5,453	3479.2
l evel 2	Large	10+ delivery van / rack truck fleet	5	15	140	11.3
Private Depot	Medium	5-10 delivery van / rack truck fleet owned by local contractor	5	15	725	52.4
	Small	Single truck owned by individual contractor	2	15	9,706	220.4

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

Site configurations for Class 3 Trucks

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	15	208	107	330.6
Public	Medium	Public hub station with 5-15 chargers along public corridor	2	208	174	70.3
Hub	Small	Public hub station with <5 chargers on rural highway	<1	208	258	12.4
l evel 2	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	8	15	107	12.5
Public	Medium	Public hub station with 5-15 chargers along public corridor	1	15	174	2.7
Hub	Small	Public hub station with <5 chargers on rural highway	<1	15	258	0.5
DCFC	Large	10+ delivery van fleet	8	213	46	75.9
Private	Medium	5-10 delivery van fleet owned by local contractor	7	213	205	318.5
Depot	Small	3-truck fleet owned by small contractor	3	213	2,638	1,609.0
l evel 2	Large	10+ delivery van fleet	4	15	84	4.9
Private Depot	Medium	5-10 delivery van fleet owned by local contractor	4	15	369	20.4
	Small	Single truck owned by individual contractor	1	15	4,773	103.3

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

Site configurations for Class 4-5 Trucks

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	11	207	107	233.5
Public	Medium	Public hub station with 5-15 chargers along public corridor	1	207	174	49.7
Hub	Small	Public hub station with <5 chargers on rural highway	<1	207	258	8.8
Level 2 Public	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	6	15	107	8.8
	Medium	Public hub station with 5-15 chargers along public corridor	1	15	174	1.9
Hub	Small	Public hub station with <5 chargers on rural highway	<1	15	258	0.3
DCFC	Large	10+ delivery van fleet	8	213	32	58.1
Private	Medium	5-10 delivery van fleet owned by local contractor	7	213	191	288.4
Depot	Small	3-truck fleet owned by small contractor	2	213	2,556	1,069.1
l evel 2	Large	10+ delivery van fleet	4	15	58	3.7
Private Depot	Medium	5-10 delivery van fleet owned by local contractor	4	15	344	18.5
	Small	Single truck owned by individual contractor	1	15	4,626	68.6

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

Site configurations for Class 6 Trucks

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	7	207	107	164.9
Public Hub	Medium	Public hub station with 5-15 chargers along public corridor	1	207	174	35.1
	Small	Public hub station with <5 chargers on rural highway	<1	207	258	6.2
Level 2 Public	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	4	15	107	6.2
	Medium	Public hub station with 5-15 chargers along public corridor	1	15	174	1.3
Hub	Small	Public hub station with <5 chargers on rural highway	<1	15	258	0.2
DCFC	Large	10+ rack truck fleet	8	213	24	41.2
Private	Medium	5-10 rack truck fleet owned by local contractor	5	213	188	209.8
Depot	Small	3-truck fleet owned by small contracting business	1	213	2,600	749.3
l evel 2	Large	10+ rack truck fleet	4	15	44	2.6
Private	Medium	5-10 rack truck fleet owned by local contractor	3	15	337	13.4
Depot	Small	Single truck owned by individual contractor	1	15	4,676	47.8

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

Site configurations for Class 7-8 Trucks + Transport Refrigeration Units

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	109	203	79	1742.5
Public Hub	Medium	Public hub station with 5-15 chargers along public corridor	14	203	128	370.7
	Small	Public hub station with <5 chargers on rural highway	2	203	190	65.4
Level 2 Public	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	32	14	79	36.6
	Medium	Public hub station with 5-15 chargers along public corridor	4	14	128	7.8
Hub	Small	Public hub station with <5 chargers on rural highway	1	14	190	1.4
DCFC	Large	50+ freight truck fleet	50	214	29	306.2
Private	Medium	20-50 freight truck fleet	47	214	178	1791.7
Depot	Small	<20 freight truck fleet	12	214	2,715	7134.8
l evel 2	Large	10+ transport refrigeration unit fleet	15	14	2,282	491.6
Private	Medium	2-10 transport refrigeration unit fleet	2	14	3,892	98.1
Depot	Small	1-2 transport refrigeration unit fleet	1	14	5,175	65.7

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

Site configurations for Class 7-8 Trucks

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	53	210	79	878.3
Public	Medium	Public hub station with 5-15 chargers along public corridor	7	210	128	186.8
Hub	Small	Public hub station with <5 chargers on rural highway	1	210	190	33.0
l evel 2	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	16	15	79	18.3
Public	Medium	Public hub station with 5-15 chargers along public corridor	2	15	128	3.9
Hub	Small	Public hub station with <5 chargers on rural highway	<1	15	190	0.7
DCFC	Large	50+ freight truck fleet	50	214	29	306.2
Private	Medium	20-50 freight truck fleet	47	214	178	1,791.7
Depot	Small	<20 freight truck fleet	12	214	2,715	7,134.8
l evel 2	Large	-	-	-	-	-
Private	Medium	-	-	-	-	-
Depot	Small	-	-	-	-	-

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

Site configurations for School Buses

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCEC	Large	-	-	-	-	-
Public	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
Level 2 Public	Large	-	-	-	-	-
	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
DCFC	Large	10+ school bus fleet owned by large school district	13	50	1	0.7
Private	Medium	5-10 school bus fleet owned by mid-size school district	1	50	117	6.3
Depot	Small	1-2 school bus fleet owned by small school district	<1	50	6,403	7.6
Level 2	Large	10+ school bus fleet owned by large school district	69	15	1	1.0
Private	Medium	5-10 school bus fleet owned by mid-size school district	6	15	117	9.9
Depot	Small	1-2 school bus fleet owned by small school district	<1	15	6,403	12.1

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and 50 kW for DCFC.

Site configurations for Transit Buses

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCEC	Large	-	-	-	-	-
Public	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
Level 2 Public	Large	-	-	-	-	-
	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
DCEC	Large	10+ transit bus fleet owned by large public transit agency	121	207	17	423.9
Private	Medium	5-10 transit bus fleet owned by mid-size public transit agency	9	207	184	325.8
Depot	Small	1-2 transit bus fleet owned by small public transit agency	<1	207	6,891	137.3
l evel 2	Large	10+ transit bus fleet owned by large public transit agency	2	14	17	0.5
Private	Medium	5-10 transit bus fleet owned by mid-size public transit agency	<1	14	184	0.4
Depot	Small	1-2 transit bus fleet owned by small public transit agency	<1	14	6,891	0.2

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

Site configurations for On-Road Specialty Vehicles

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers co-located at high-traffic suburban highway exit	<1	208	107	5.1
Public Hub	Medium	Public hub station with 5-15 chargers along public corridor	<1	208	174	1.1
	Small	Public hub station with <5 chargers specifically for specialty use case	<1	208	258	0.2
Level 2 Public	Large	Public hub station with 15+ chargers co-located at high-traffic suburban highway exit	<1	15	107	0.1
	Medium	Public hub station with 5-15 chargers along public corridor	<1	15	174	<0.1
Hub	Small	Public hub station with <5 chargers specifically for specialty use case	<1	15	258	<0.1
DCFC	Large	City fleet of 10 refuse trucks	2	259	8	3.6
Private	Medium	Mid-size hospital with two electric ambulances and few ICEVs	1	281	24	6.8
Depot	Small	Single rental RV charged at fleet depot site	<1	296	473	51.9
l evel 2	Large	City fleet of 10 refuse trucks	<1	17	11	0.1
Private	Medium	Mid-size hospital with two electric ambulances which serve in conjunction with ICEVs	<1	18	30	0.1
Depot	Small	Individually-owned RV charged at residential site	<1	19	563	0.7

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

This table is a breakout of the Class 7-8 Trucks + Transport Refrigeration Units table.

Site configurations for In-State TRUs

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	56	196	79	864.3
Public	Medium	Public hub station with 5-15 chargers along public corridor	7	196	128	183.9
Hub	Small	Public hub station with <5 chargers on rural highway	1	196	190	32.4
Level 2 Public	Large	Public hub station with 15+ chargers at high-traffic suburban highway exit	17	14	79	18.3
	Medium	Public hub station with 5-15 chargers along public corridor	2	14	128	3.9
Hub	Small	Public hub station with <5 chargers on rural highway	<1	14	190	0.7
DCFC	Large	-	-	-	-	-
Private	Medium	-	-	-	-	-
Depot	Small	-	-	-	-	-
l evel 2	Large	10+ transport refrigeration unit fleet	15	14	2,282	491.6
Private	Medium	2-10 transport refrigeration unit fleet	2	14	3,892	98.1
Depot	Small	1-2 transport refrigeration unit fleet	1	14	5,175	65.7

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 300 kW for DCFC.

Site configurations for Airport Ground Support Equipment

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCEC	Large	-	-	-	-	-
Public	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
Level 2 Public	Large	-	-	-	-	-
	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
DCFC	Large	Primary commercial service airport, e.g., Los Angeles International Airport	1,011	126	3	383.5
Private	Medium	Non-primary commercial service airport, e.g., Del Norte County Airport	155	126	7	136.9
Depot	Small	General aviation airport, e.g., Imperial County Airport	2	126	61	15.5
l evel 2	Large	Primary commercial service airport, e.g., Los Angeles International Airport	560	14	3	22.8
Private	Medium	Non-primary commercial service airport, e.g., Del Norte County Airport	86	14	7	8.1
Depot	Small	General aviation airport, e.g., Imperial County Airport	1	14	61	0.9

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 150 kW for DCFC.

Site configurations for Seaport Cargo Handling Equipment

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCFC	Large	-	-	-	-	-
Public	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
Level 2 Public	Large	-	-	-	-	-
	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
DCFC	Large	Port of Los Angeles	145	128	12	231.6
Private	Medium	Humboldt Bay Harbor	64	128	19	154.4
Depot	Small	Port of San Luis Harbor	6	128	30	22.0
l evel 2	Large	Port of Los Angeles	80	14	12	14.4
Private	Medium	Humboldt Bay Harbor	36	14	19	9.6
Depot	Small	Port of San Luis Harbor	3	14	30	1.4

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 150 kW for DCFC.

Site configurations for Other Forklifts

Planned Incentives Scenario, 2040

Site Type	Site Size	Illustrative Use Case	Average Port Count ¹	Average Rated kW ²	Total Site Count	Total Rated MW ³
DCEC	Large	-	-	-	-	-
Public	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
Level 2 Public	Large	-	-	-	-	-
	Medium	-	-	-	-	-
Hub	Small	-	-	-	-	-
DCFC	Large	-	-	-	-	-
Private	Medium	-	-	-	-	-
Depot	Small	-	-	-	-	-
l evel 2	Large	Warehouse with 100+ forklifts	1,068	14	36	540.5
Private	Medium	Warehouse with 10-100 forklifts	53	14	1,410	1,042.0
Depot	Small	Warehouse with less than 10 forklifts	3	14	26,379	1,183.6

1. Average Port Count is stacking across vehicle segments and technologies, i.e., ports for multiple vehicle segments are expected to be co-located, resulting in an actual site having a summed up port count from all segments served.

2. Average Rated kW is the average charger rated capacity accounting for charger levels ranging from 9.3 kW to 19.2 kW for Level 2 and from 100 kW to 150 kW for DCFC.

Public charging infrastructure is expected to follow traffic patterns along highway corridors outside of metro areas

Los Angeles, Sacramento, and San Francisco Bay Area are expecting moderate infrastructure in surrounding areas

1. Total Public Hub charging ports (therefore excluding Private Depot charging) of any class in 2040, not adjusted for area or population.

Modeling Methodology Overview

Guidehouse's EV adoption model is based on multidimensional inputs to forecast vehicle penetration

Scope

- Within California
- Including battery electric vehicles (BEVs) and plugin hybrid electric vehicles (PHEVs)
- · Including medium- and heavy-duty (MHD) vehicles
- · Including individually- and fleet-owned vehicles

Methodology

- Leveraging VAST[™] Suite¹, a proprietary model developed by Guidehouse to forecast geographic penetration and dispersion of electric vehicles
- Taking inputs at the census tract level, including:
 - Vehicle registrations by make and model
 - Expected gasoline and battery prices
 - Vehicle lifetime
 - Incentives
 - Annually collected survey data on vehicle owners
 - Demographic data, e.g., population, income, units in housing structure, vehicle ownership, household counts, educational attainment

EV adoption modeling inputs and outputs

	Key Inputs			Key Outputs
Input	Description	Source	Output	Description
Registration Data	California vehicle registration by fuel type and zip	IHS Markit	EV Sales	Number of units per year
Fuel Costs ¹	Electricity rates (\$/kwh) and gasoline and diesel prices (\$/gal)	Energy Information Administration (electricity) AAA (gasoline and diesel)	EV Population	Total units in operation in a given year, accounting for cumulative sales and
Vehicle Availability	Guidehouse research on future availability of EVs, including MHD vehicles in California	Guidehouse Insights	Voor	
VMT	Forecasted annual vehicle miles traveled, California	Federal Highway Administration		Census Tract
Vehicle Efficiency	kWh/mile forecast			
PHEV e-Utilization	Proportion of PHEV miles using battery	 Argonne National Lab 	Duty	Medium and Heavy
BEV Range	Total miles increase forecast	Guidehouse Insights	Class	See slide 8
Education and Income	Educational attainment and income levels, California, by census tract	US Census Bureau	Owner	Individual, Fleet
Battery Cost	\$/kWh cost decline forecast	Guidehouse Insights	Powertrain ²	BEV, PHEV

1. Fuel mix for MHD vehicles is 78.3% diesel, 18.0% gasoline, 1.6% compressed natural gas, and 2.1% other fuel types as of year-end 2019. 2. BEV = battery electric vehicle. PHEV = plug-in hybrid electric vehicle.

EV charging needs inputs and outputs

Key Inputs			Key Outputs	
Input	Description	Source	Output	Description
Siting Objective Function	Desired objective function for EVSE siting process	Guidehouse / CalETC	Site Location	Census tract
Charging Site Distance Threshold	The network distance defining the radius around each site serviced by that site	Guidehouse	Use Case	Charging use case, examples include Public Market and Private Depot
Charger-to-Vehicle Ratios ¹	Current, long-run, and interpolated ratios of chargers needed to support number of EVs, by Tech, EVSE Owner (Public/Private), Use Case	Alternative Fuel Data Center (current) NREL's EVI-Pro (long-run)	Technology	L2, DC
VMT	VMT by segment provides calibration point for charger-to-vehicle ratios based on expected utilization	Federal Highway Administration	Rated kW	Average rated kW by use case, technology, and year
Existing Charging Infrastructure	Locations of existing charging stations by tech, owner and use case	Alternative Fuels Data Center	Year	2020-2050
Annual Average Daily Traffic	Annual average daily traffic for roads in service area	Federal Highway Administration	Number of Ports	Number of ports forecasted for each site

1. Vehicle-per-charger ratio assumptions will be co-developed with CalETC and based on the best publicly-available data (even if LD only) along with substantiated refinements calibrated to Guidehouse synthetic vehicle load shapes by use case. Charging duty cycles will then be backchecked to ensure assumptions are operationally realistic.

EV charging site location allocation options

Objective Function

Maximize Coverage

number of sites

Minimize Facilities Full coverage with minimum sites

Maximum coverage with a specific

Concept

possible

Goal

Access to all

Key Application

Meet all demand, corridor sites

Meet as much demand as possible with limited number of sites

Target Market Share Meet target market share

Source: http://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/location-allocation.htm

Highest utilization

Access to as much as

Efficiently allocate sites to meet points of highest demand

Guidehouse model used a Minimize Facilities + Target Market Share hybrid approach

Minimize Facilities with a specific distance between sites

Minimize Facilities flags optimal sites for ensuring complete coverage in areas with low availability of charging infrastructure, such as rural areas

Target Market Share

Target Market Share best simulates the behavior of all agents in the market, so it's the best for forecasting future load

Vehicle take-rates by site type and use case

Site Type	Specific Use Case	Vehicle Segments Served	
	Market	Class 2a Vehicles, Class 2b Vehicles	
Public Hub	Hub	Class 3 Trucks, Class 4-5 Trucks, Class 6 Trucks, Class 7-8 Trucks, TRUs, On-Road Specialty Vehicles	
	Residential (Single-Family, Multi-Family)	Class 2a Vehicles, Class 2b Vehicles	
	Workplace	Class 2a Vehicles, Class 2b Vehicles	
	Fleet Depot	Class 2a Vehicles, Class 2b Vehicles, Class 3 Trucks, Class 4-5 Trucks, Class 6 Trucks, Class 7-8 Trucks, On-Road Specialty Vehicles	
Private Depot	Bus Depot	School Buses Transit Buses	
	TRU Facility	TRUs	
	Airport, Seaport	Airport Ground Support Equipment, Seaport Cargo Handling Equipment	
	Warehouse	Forklifts	

- Vehicle take-rates consider the variety of vehicle use cases listed in the table to the left.
- Observed or simulated load profiles were modeled for each specific use case to verify the take-rate is sufficient to meet charging demand based on the vehicle duty cycle.
- The take-rates for each use case were rolled up to provide takerates by **site type** for Public Hub and Private Depot charging.

Modeling approach for transport refrigeration units

State-Level Adoption Forecast

 Leverage state-wide TRU population and TCO data from CARB report¹ to forecast adoption of electric TRUs²

Census-Tract-Level Adoption Forecast

 Use County Business Patterns (CBP) dataset from US Census Bureau to disaggregate statewide forecast to census tract level by number of employees per tract

EVSE Annual Energy and Site Configurations

 Leverage current energy consumption data from CARB report¹ along with census-tract-level adoption forecast to project annual energy consumption for electrified TRUs

CARB Technology Assessment: Transport Refrigerators, page II-9. See slide 54 for data extract.
 This segment includes only electric refrigeration units. Electric trucks are included in other on-road truck segments. See slide 8 for vehicle segmentation.

Modeling Assumptions

Modeling assumptions (1/3)

Class 2a / 2b Vehicles

- IHS Markit registration input data does not differentiate between Class 2a and Class 2b vehicles, making it difficult to segment both vehicle subclasses for each other.
- However, CARB maintains an inventory of Class 2a and Class 2b vehicles, accessible on the EMFAC website, and provided Guidehouse with ACT forecast inventory by vehicle segment.
- Therefore, Guidehouse leveraged CARB's EMFAC data and ACT forecast data for the Class 2a / 2b forecast.

On-Route Ultra-High-Power Private Charging

- On-route charging, which places ultra-high-power chargers along transit / off-road routes, is a niche use case to accommodate transportation systems where between-route charging is not possible.
- These private charging use cases are included in the Private Depot use case.
- Guidehouse recognizes that on-route chargers may be located in neighboring census tracts, rather than the tract where the vehicle is registered; however, Guidehouse notes the lack of locational data and estimates that the number of such charging use cases is limited.

Modeling assumptions (2/3)

LCFS Credits

- Low Carbon Fuel Standard (LCFS) credits were excluded from the scope.
- Guidehouse recognizes that LCFS credits can be significant for specific vehicle segments, e.g., circa \$10,000 credit value per transit bus per year.

Sub-State Incentives

- The Heavy Duty Truck Emission Reduction Grants from the San Joaquin Valley Air Pollution Control District was identified to be the most impactful substate incentive, and was included in the analysis. Any other explicit sub-state (e.g., utility-level) incentive programs were excluded from the scope.
- Guidehouse recognizes that utility-level incentive programs may further drive EV adoption in specific census tracts. The historical impact of local incentive programs on EV adoption is implicitly accounted for when calibrating the model against census tract level registration data.

Modeling assumptions (3/3)

Level 1 Charging

- Level 1 charging was not included in the EV Charging Needs and Site Configuration output, however, it was included in the underlying analysis.
- More specifically, individually-owned Class 2a-2b Vehicles were expected to use some 1.4 kW Level 1 charging, which would come in addition to the Level 2 and DCFC charging needs.

Total Rated kW

- Total rated kW provided in the EV Charging Needs and Site Configuration output is the result of average port count x average rated kW x total site count, not discounted for any load management.
- Total rated kW is therefore different from any grid systemwide coincident / noncoincident peak calculation.

Key Modeling Inputs

ICEV fuel prices

Fuel prices for ICEVs are a blended average of gas and diesel prices

- The fraction of Gas and Diesel vehicles is calculated from IHS Markit registration data for California
- The table to the right demonstrates how the blended average fuel price is computed

Duty	Fuel Type	Fraction of Total Vehicles by Duty ¹	Fuel Price ²	Blended Price
HDV	Diesel	0.982	\$4.28	- \$1 27
ΠUV	Gas	0.018	\$3.82	φ 4 .27
	Diesel	0.693	\$4.28	- \$4 14
IVIDV	Gas	0.307	\$3.82	ψ4.14

1. Fraction remains constant year to year

2. Source: EIA, AAA (example for year 2020)

Average annual vehicle miles traveled

Annual Miles per Vehicle

Source: Federal Highway Administration, Highway Statistics 2016, Table VM-1, updated December 2018

ACT regulation inputs

ACT and ACT Fleet regulations are modeled using a long-term target sales percentage for a given year consistent with the ACT 15-day regulation

- The Long-Term ACT Target represents the percentage of sales that must be zero-emission (ZE)
- The ACT Target Year represents the year at which manufacturers must achieve the sales target. Requirements continue after the target year.

Vehicle Class	Long-Term ACT Target ¹	ACT Target Year ²
Class 2b-3	15%	2030
Class 4-8	50%	2030
Class 7-8 Tractors	15%	2030

1. Target for percentage of vehicle sales that must be ZE

2. ACT requirements continues after Target Year

TRU forecasting inputs

Input	Truck TRUs	Trailer TRUs	Railcar TRUs	TRU Gen Sets	Guidehouse Input
Daily California-based Population Operating in California	7,100	20,400	1,300	4,800	Adaption
Daily Out-of-State- Based Population Operating in California	-	12,500	-	3,000	Forecasting
Annual Engine Activity in California (hp- hrs/year)	75,228,000	872,106,00	34,255,000	80,989,000	Annual Energy Forecasting

Source: CARB Technology Assessment: Transport Refrigerators, page II-9

Glossary

Acronym	Definition	Acronym
AADT	Annual Average Daily Traffic	тсо
ACT	Advanced Clean Truck	TRU
AFDC	Alternative Fuels Data Center	VAST™
BEV	Battery Electric Vehicle	VMT
CARB	California Air Resources Board	ZCTA
CAFE	Corporate Average Fuel Economy	ZEV
СВР	County Business Patterns	
DCFC	Direct Current Fast Charger	
EV	Electric Vehicle	
EVSE	Electric Vehicle Supply Equipment	
ICEV	Internal Combustion Engine Vehicle	
L1	Level 1 Charger	
L2	Level 2 Charger	
LCFS	Low Carbon Fuel Standard	
LD	Light Duty	
MHD	Medium and Heavy Duty	
PHEV	Plug-in Hybrid Electric Vehicle	

Acronym	Definition
тсо	Total Cost of Ownership
TRU	Transport Refrigeration Units
VAST™	Vehicle Analytics Simulation Tool
VMT	Vehicle Miles Traveled
ZCTA	Zip Code Tabulation Area
ZEV	Zero-Emission Vehicle

Guidehouse

Illustrative Class 2a Vehicles

Battery Electric Vehicles

Tesla Model X

Chrysler Pacifica PHEV

Plug-In Hybrid Electric Vehicles

BMW X5 PHEV

Porsche Cayenne PHEV

Audi e-tron

Mercedes GLE PHEV

Range Rover PHEV

Lincoln Aviator PHEV

Illustrative Off-Road Vehicles

Airport Ground Support Equipment		Seaport Car	Seaport Cargo Handling Equipment		Other Forklifts	
Vehicle Type	Use Case	Vehicle Type	Use Case	Vehicle Type	Use Case	
Aircraft Refueler	Truck used as a mobile refueling station	Hostler Truck	Moving cargo containers over short distances	Class 1 Forklift	Indoor warehouse use	
				Class 2 Forklift	Indoor warehouse narrow aisle use	
AircraftLow-profile pushbackPushbacktractor that moves aircraftTractoraway from airport gates	Low-profile pushback	le pushback at moves aircraft n airport gates	Grounds or stacks shipping containers, typically in large-sized ports	Class 3 Forklift	Pallet stacking indoor and outdoor uses	
	away from airport gates			Class 4 Forklift	Indoor warehouse and distribution uses	
Cargo /	Container Handler Cargo / Equipment used for	Stacking cargo containers, typically in small- and medium-sized	Class 5 Forklift	Outdoor lumberyard or construction use		
Luggage Loader	uggageloading / unloading.oaderluggage, containers, and pallets into the aircraft hold		ports	Class 6 Forklift	Assembly line use	
				Class 7 Forklift	Outdoor lumberyard or construction use	

Disclaimer

- This deliverable was prepared by Guidehouse Inc. for the sole use and benefit of, and pursuant to a client relationship exclusively with CaIETC ("Client").
- The work presented in this publication represents Guidehouse's professional judgement based on the information available at the time this report was prepared and is being provided for informational purposes only.
- Any market forecasts or predictions contained in the publication reflect Guidehouse's current expectations based on market data and trend analysis. Market predictions and expectations are inherently uncertain and actual results may differ materially from those contained in the publication.
- Guidehouse is not responsible for a third party's use of, or reliance upon, the deliverable, nor any decisions based on the report. Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or the data, information, findings and opinions contained in the report.
- Any reference to a specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply an endorsement, recommendation, or favoring by Guidehouse.

Contact

Derek Jones Director derek.jones@guidehouse.com

Alex Metz Associate Director alexandre.metz@guidehouse.com

Becca Kuss Managing Consultant rebecca.kuss@guidehouse.com

©2020 Guidehouse, Inc. All rights reserved. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.